Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Más filtros


Intervalo de año de publicación
1.
BMC Biol ; 19(1): 220, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34610848

RESUMEN

BACKGROUND: Hansen's disease (leprosy), widespread in medieval Europe, is today mainly prevalent in tropical and subtropical regions with around 200,000 new cases reported annually. Despite its long history and appearance in historical records, its origins and past dissemination patterns are still widely unknown. Applying ancient DNA approaches to its major causative agent, Mycobacterium leprae, can significantly improve our understanding of the disease's complex history. Previous studies have identified a high genetic continuity of the pathogen over the last 1500 years and the existence of at least four M. leprae lineages in some parts of Europe since the Early Medieval period. RESULTS: Here, we reconstructed 19 ancient M. leprae genomes to further investigate M. leprae's genetic variation in Europe, with a dedicated focus on bacterial genomes from previously unstudied regions (Belarus, Iberia, Russia, Scotland), from multiple sites in a single region (Cambridgeshire, England), and from two Iberian leprosaria. Overall, our data confirm the existence of similar phylogeographic patterns across Europe, including high diversity in leprosaria. Further, we identified a new genotype in Belarus. By doubling the number of complete ancient M. leprae genomes, our results improve our knowledge of the past phylogeography of M. leprae and reveal a particularly high M. leprae diversity in European medieval leprosaria. CONCLUSIONS: Our findings allow us to detect similar patterns of strain diversity across Europe with branch 3 as the most common branch and the leprosaria as centers for high diversity. The higher resolution of our phylogeny tree also refined our understanding of the interspecies transfer between red squirrels and humans pointing to a late antique/early medieval transmission. Furthermore, with our new estimates on the past population diversity of M. leprae, we gained first insights into the disease's global history in relation to major historic events such as the Roman expansion or the beginning of the regular transatlantic long distance trade. In summary, our findings highlight how studying ancient M. leprae genomes worldwide improves our understanding of leprosy's global history and can contribute to current models of M. leprae's worldwide dissemination, including interspecies transmissions.


Asunto(s)
Mycobacterium leprae , Europa (Continente) , Genoma Bacteriano/genética , Humanos , Lepra/genética , Mycobacterium leprae/genética , Dinámica Poblacional
2.
mSphere ; 6(4): e0053521, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34287002

RESUMEN

Mycobacterium tuberculosis complex (MTBC) species are classic examples of genetically monomorphic microorganisms due to their low genetic variability. Whole-genome sequencing made it possible to describe both the main species within the complex and M. tuberculosis lineages and sublineages. This differentiation is based on single nucleotide polymorphisms (SNPs) and large sequence polymorphisms in the so-called regions of difference (RDs). Although a number of studies have been performed to elucidate RD localizations, their distribution among MTBC species, and their role in the bacterial life cycle, there are some inconsistencies and ambiguities in the localization of RDs in different members of the complex. To address this issue, we conducted a thorough search for all possible deletions in the WGS data collection comprising 721 samples representing the full MTBC diversity. Discovered deletions were compared with a list of all previously described RDs. As with the SNP-based analysis, we confirmed the specificities of 79 regions at the species, lineage, or sublineage level, 17 of which are described for the first time. We also present RDscan (https://github.com/dbespiatykh/RDscan), an open-source workflow, which detects deletions from short-read sequencing data and correlates the results with high-specificity RDs, curated in this study. Testing of the workflow on a collection comprising ∼7,000 samples showed a high specificity of the found RDs. This study provides novel details that can contribute to a better understanding of the species differentiation within the MTBC and can help to determine how individual clusters evolve within various MTBC species. IMPORTANCE Reductive genome evolution is one of the most important and intriguing adaptation strategies of different living organisms to their environment. Mycobacterium offers several notorious examples of either naturally reduced (Mycobacterium leprae) or laboratory-reduced (Mycobacterium bovis BCG) genomes. Mycobacterium tuberculosis complex has its phylogeny unambiguously framed by large sequence polymorphisms that present unidirectional unique event changes. In the present study, we curated all known regions of difference and analyzed both Mycobacterium tuberculosis and animal-adapted MTBC species. For 79 loci, we have shown a relationship with phylogenetic units, which can serve as a marker for diagnosing or studying biological effects. Moreover, intersections were found for some loci, which may indicate the nonrandomness of these processes and the involvement of these regions in the adaptation of bacteria to external conditions.


Asunto(s)
Genoma Bacteriano , Mycobacterium tuberculosis/genética , Filogenia , Secuenciación Completa del Genoma , Animales , Genómica , Humanos , Mycobacterium tuberculosis/clasificación , Polimorfismo de Nucleótido Simple , Tuberculosis/microbiología
3.
Interdiscip Sci ; 13(2): 334-343, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34009546

RESUMEN

The identification of clinically relevant bacterial amino acid changes can be performed using different methods aimed at the identification of genes showing positively selected amino acid sites (PSS). Nevertheless, such analyses are time consuming, and the frequency of genes showing evidence for PSS can be low. Therefore, the development of a pipeline that allows the quick and efficient identification of the set of genes that show PSS is of interest. Here, we present Auto-PSS-Genome, a Compi-based pipeline distributed as a Docker image, that automates the process of identifying genes that show PSS using three different methods, namely codeML, FUBAR, and omegaMap. Auto-PSS-Genome accepts as input a set of FASTA files, one per genome, containing all coding sequences, thus minimizing the work needed to conduct positively selected sites analyses. The Auto-PSS-Genome pipeline identifies orthologous gene sets and corrects for multiple possible problems in input FASTA files that may prevent the automated identification of genes showing PSS. A FASTA file containing all coding sequences can also be given as an external global reference, thus easing the comparison of results across species, when gene names are different. In this work, we use Auto-PSS-Genome to analyse Mycobacterium leprae (that causes leprosy), and the closely related species M. haemophilum, that mainly causes ulcerating skin infections and arthritis in persons who are severely immunocompromised, and in children causes cervical and perihilar lymphadenitis. The genes identified in these two species as showing PSS may be those that are partially responsible for virulence and resistance to drugs.


Asunto(s)
Aminoácidos/química , Bacterias , Niño , Genoma Bacteriano , Humanos , Mycobacterium leprae/genética , Virulencia
4.
Curr Biol ; 30(19): R1215-R1231, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-33022266

RESUMEN

The ability to sequence genomes from ancient biological material has provided a rich source of information for evolutionary biology and engaged considerable public interest. Although most studies of ancient genomes have focused on vertebrates, particularly archaic humans, newer technologies allow the capture of microbial pathogens and microbiomes from ancient and historical human and non-human remains. This coming of age has been made possible by techniques that allow the preferential capture and amplification of discrete genomes from a background of predominantly host and environmental DNA. There are now near-complete ancient genome sequences for three pathogens of considerable historical interest - pre-modern bubonic plague (Yersinia pestis), smallpox (Variola virus) and cholera (Vibrio cholerae) - and for three equally important endemic human disease agents - Mycobacterium tuberculosis (tuberculosis), Mycobacterium leprae (leprosy) and Treponema pallidum pallidum (syphilis). Genomic data from these pathogens have extended earlier work by paleopathologists. There have been efforts to sequence the genomes of additional ancient pathogens, with the potential to broaden our understanding of the infectious disease burden common to past populations from the Bronze Age to the early 20th century. In this review we describe the state-of-the-art of this rapidly developing field, highlight the contributions of ancient pathogen genomics to multidisciplinary endeavors and describe some of the limitations in resolving questions about the emergence and long-term evolution of pathogens.


Asunto(s)
Bacterias/patogenicidad , ADN Antiguo/análisis , ADN Bacteriano/genética , Animales , Bacterias/genética , Evolución Biológica , Evolución Molecular , Genoma/genética , Genoma Bacteriano/genética , Genómica/métodos , Humanos , Microbiota/genética , Mycobacterium leprae/genética , Mycobacterium tuberculosis/genética , Filogenia , Treponema/genética , Virus de la Viruela/genética , Vibrio cholerae/genética , Yersinia pestis/genética
5.
Infect Genet Evol ; 86: 104581, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33022427

RESUMEN

Molecular epidemiology investigations are notoriously challenging in the leprosy field mainly because the inherent characteristics of the disease as well as its yet uncultivated causative agents, Mycobacterium leprae and M. lepromatosis. Despite significant developments in understanding the biology of leprosy bacilli through genomic approaches, the exact mechanisms of transmission is still unclear and the factors underlying pathological variation of the disease in different patients remain as major gaps in our knowledge about leprosy. Despite these difficulties, the last two decades have seen the development of genotyping procedures based on PCR-sequencing of target loci as well as by the genome-wide analysis of an increasing number of geographically diverse isolates of leprosy bacilli. This has provided a foundation for molecular epidemiology studies that are bringing a better understanding of strain evolution associated with ancient human migrations, and phylogeographical insights about the spread of disease globally. This review discusses the advantages and drawbacks of the main tools available for molecular epidemiological investigations of leprosy and summarizes various methods ranging from PCR-based genotyping to genome-typing techniques. We also describe their main applications in analyzing the short-range and long-range transmission of the disease. Finally, we summarise the current gaps and challenges that remain in the field of molecular epidemiology of leprosy.


Asunto(s)
Lepra/epidemiología , Lepra/microbiología , Mycobacterium leprae/genética , Genes Bacterianos , Genoma Bacteriano , Genómica/métodos , Humanos , Lepra/tratamiento farmacológico , Lepra/transmisión , Epidemiología Molecular , Mycobacterium leprae/efectos de los fármacos , Filogenia , Vigilancia en Salud Pública
6.
Philos Trans R Soc Lond B Biol Sci ; 375(1812): 20190584, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33012227

RESUMEN

Mineralized dental plaque (calculus) has proven to be an excellent source of ancient biomolecules. Here we present a Mycobacterium leprae genome (6.6-fold), the causative agent of leprosy, recovered via shotgun sequencing of sixteenth-century human dental calculus from an individual from Trondheim, Norway. When phylogenetically placed, this genome falls in branch 3I among the diversity of other contemporary ancient strains from Northern Europe. Moreover, ancient mycobacterial peptides were retrieved via mass spectrometry-based proteomics, further validating the presence of the pathogen. Mycobacterium leprae can readily be detected in the oral cavity and associated mucosal membranes, which likely contributed to it being incorporated into this individual's dental calculus. This individual showed some possible, but not definitive, evidence of skeletal lesions associated with early-stage leprosy. This study is the first known example of successful multi-omics retrieval of M. leprae from archaeological dental calculus. Furthermore, we offer new insights into dental calculus as an alternative sample source to bones or teeth for detecting and molecularly characterizing M. leprae in individuals from the archaeological record. This article is part of the theme issue 'Insights into health and disease from ancient biomolecules'.


Asunto(s)
ADN Antiguo/análisis , Cálculos Dentales/historia , Genoma Bacteriano , Lepra/historia , Mycobacterium leprae/genética , Adulto , Arqueología , Cálculos Dentales/microbiología , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Historia del Siglo XVI , Humanos , Lepra/microbiología , Persona de Mediana Edad , Noruega , Análisis de Secuencia de ADN
7.
Philos Trans R Soc Lond B Biol Sci ; 375(1812): 20190582, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33012236

RESUMEN

As one of the oldest known human diseases, leprosy or Hansen's disease remains a public health concern around the world with over 200 000 new cases in 2018. Most human leprosy cases are caused by Mycobacterium leprae, but a small number of cases are now known to be caused by Mycobacterium lepromatosis, a sister taxon of M. leprae. The global pattern of genomic variation in M. leprae is not well defined. Particularly, in the Pacific Islands, the origins of leprosy are disputed. Historically, it has been argued that leprosy arrived on the islands during nineteenth century colonialism, but some oral traditions and palaeopathological evidence suggest an older introduction. To address this, as well as investigate patterns of pathogen exchange across the Pacific Islands, we extracted DNA from 39 formalin-fixed paraffin-embedded biopsy blocks dating to 1992-2016. Using whole-genome enrichment and next-generation sequencing, we produced nine M. leprae genomes dating to 1998-2015 and ranging from 4-63× depth of coverage. Phylogenetic analyses indicate that these strains belong to basal lineages within the M. leprae phylogeny, specifically falling in branches 0 and 5. The phylogeographical patterning and evolutionary dating analysis of these strains support a pre-modern introduction of M. leprae into the Pacific Islands. This article is part of the theme issue 'Insights into health and disease from ancient biomolecules'.


Asunto(s)
Evolución Biológica , Genoma Bacteriano , Lepra/microbiología , Mycobacterium leprae/genética , Filogeografía , Adolescente , Adulto , Anciano , Samoa Americana , Niño , Evolución Molecular , Femenino , Hawaii , Humanos , Masculino , Micronesia , Persona de Mediana Edad , Islas del Pacífico , Adulto Joven
8.
BMC Biol ; 18(1): 108, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32859198

RESUMEN

BACKGROUND: Recent advances in sequencing have facilitated large-scale analyses of the metagenomic composition of different samples, including the environmental microbiome of air, water, and soil, as well as the microbiome of living humans and other animals. Analyses of the microbiome of ancient human samples may provide insights into human health and disease, as well as pathogen evolution, but the field is still in its very early stages and considered highly challenging. RESULTS: The metagenomic and pathogen content of Egyptian mummified individuals from different time periods was investigated via genetic analysis of the microbial composition of various tissues. The analysis of the dental calculus' microbiome identified Red Complex bacteria, which are correlated with periodontal diseases. From bone and soft tissue, genomes of two ancient pathogens, a 2200-year-old Mycobacterium leprae strain and a 2000-year-old human hepatitis B virus, were successfully reconstructed. CONCLUSIONS: The results show the reliability of metagenomic studies on Egyptian mummified individuals and the potential to use them as a source for the extraction of ancient pathogen DNA.


Asunto(s)
Genoma Bacteriano , Genoma Viral , Virus de la Hepatitis B/genética , Momias/microbiología , Mycobacterium leprae/genética , ADN Antiguo/análisis , Egipto , Humanos , Metagenómica , Microbiota , Momias/virología , Análisis de Secuencia de ADN
9.
PLoS Negl Trop Dis ; 14(7): e0007871, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32628669

RESUMEN

Leprosy, caused by Mycobacterium leprae, has plagued humanity for thousands of years and continues to cause morbidity, disability and stigmatization in two to three million people today. Although effective treatment is available, the disease incidence has remained approximately constant for decades so new approaches, such as vaccine or new drugs, are urgently needed for control. Research is however hampered by the pathogen's obligate intracellular lifestyle and the fact that it has never been grown in vitro. Consequently, despite the availability of its complete genome sequence, fundamental questions regarding the biology of the pathogen, such as its metabolism, remain largely unexplored. In order to explore the metabolism of the leprosy bacillus with a long-term aim of developing a medium to grow the pathogen in vitro, we reconstructed an in silico genome scale metabolic model of the bacillus, GSMN-ML. The model was used to explore the growth and biomass production capabilities of the pathogen with a range of nutrient sources, such as amino acids, glucose, glycerol and metabolic intermediates. We also used the model to analyze RNA-seq data from M. leprae grown in mouse foot pads, and performed Differential Producibility Analysis to identify metabolic pathways that appear to be active during intracellular growth of the pathogen, which included pathways for central carbon metabolism, co-factor, lipids, amino acids, nucleotides and cell wall synthesis. The GSMN-ML model is thereby a useful in silico tool that can be used to explore the metabolism of the leprosy bacillus, analyze functional genomic experimental data, generate predictions of nutrients required for growth of the bacillus in vitro and identify novel drug targets.


Asunto(s)
Genoma Bacteriano , Lepra/microbiología , Redes y Vías Metabólicas , Mycobacterium leprae/genética , Mycobacterium leprae/metabolismo , Animales , Humanos , Ratones , Ratones Desnudos , Mycobacterium leprae/crecimiento & desarrollo
10.
Int J Mycobacteriol ; 9(1): 18-23, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32474483

RESUMEN

Background: Leprosy is a contagious disease and was eliminated globally in 2002. Since then, new cases were continuously detected from different parts of the world. Untreated leprosy cases shed millions of bacteria and are the main cause of dissemination of the disease. Currently, leprosy is detected by acid-fast bacilli (AFB) microscopy and has a low sensitivity ranging from 10% to 50%. The correlation between clinical findings and microscopy is unable to provide a conclusive case detection. Thus, in the present study, we compared to molecular methods, namely RLEP-polymerase chain reaction (RLEP-PCR) and inter-simple sequence repeat-PCR (ISSR-PCR) taking AFB microscopy as a gold standard for the detection of leprosy. Methods: A total of 168 clinically diagnosed leprosy patients were recruited in this study including 58 multibacillary and 110 paucibacillary patients. Slit-skin smear samples were taken for both microscopy and molecular study. Primers for RLEP-PCR were taken from the previous reports. The primers for ISSR-PCR were designed by screening the whole genome of Mycobacterium leprae TN strain (GenBank accession AL450380) for the presence of simple sequence repeats. One primer (TA)8CA3was synthesized and used for molecular amplification of ISSR-PCR. Results: We found that the efficacy of the AFB microscopy was 24.40%, whereas the efficacy of RLEP-PCR and ISSR-PCR was 63.09% and 73.21% (P = 0.000, 0.000, and 0.469), respectively. The area under the curve of receiver operating characteristic curve for the comparison of three diagnostic methods was 0.845. An enhancement of 48.81% in the case detection rate by ISSR-PCR over AFB microscopy and 10.12% over RLEP-PCR was also found. Our study clearly reveals that ISSR-PCR is a better tool for diagnosis of leprosy than AFB microscopy and RLEP-PCR. Interestingly, both the PCR techniques RLEP-PCR and ISSR-PCR are able to detect samples which were negative for AFB microscopy. Conclusion: Thus, the demonstration of ISSR-PCR in SSS samples can provide a better sensitive and confirmative tool for early diagnosis of leprosy.


Asunto(s)
Lepra/diagnóstico , Técnicas de Diagnóstico Molecular/normas , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Estudios Transversales , Cartilla de ADN , ADN Bacteriano/genética , Genoma Bacteriano , Humanos , India , Lepra/microbiología , Técnicas de Diagnóstico Molecular/métodos , Mycobacterium leprae/genética , Estudios Prospectivos , Curva ROC , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Sensibilidad y Especificidad , Piel/microbiología
11.
Infect Genet Evol ; 84: 104399, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32512206

RESUMEN

Mycobacterium lepromatosis was identified as a causative agent for leprosy in the year 2008 in the United States and later more cases were identified in Canada, Singapore, Brazil, and Myanmar. It is known to cause diffuse lepromatosis leprosy among humans. Since it is invasive, the mortality rates are higher in comparison to the M. leprae. At genomic level, there exists 90.9% similarity between M. lepromatosis and M. leprae. Codon usage analysis based on analyses of 228 coding sequences (CDSs) of M. lepromatosis, revealed that the genome is GC rich. Among the total 16 dinucleotides, CpG dinucleotide possesses the highest dinucleotide frequency in M. lepromatosis, that is strikingly an unobvious observation since higher CpG is associated with higher proinflammatory cytokine production and NF-κB activation that eventually leads to high pathogenicity. To evade immune response, CpG content is generally less in pathogens. The unusually high CpG content can be explained by the fact that the nucleotide composition of M. lepromatosis is CG rich. Various forces interplay to shape codon usage pattern of any organism including selection; mutation, nucleotide composition as well as GC biased gene conversion. To understand the interplay between various forces; neutrality, parity, Nc-GC3 (Effective number of codons-GC content at 3rd position of the codon), aromaticity (AROMO) and the general average hydropathicity score (GRAVY) analyses have been carried out. The analyses revealed that selection force is the major contributory force. Along with the selection; mutation, nucleotide composition as well as GC biased gene conversion also play role in shaping codon usage bias in M. lepromatosis. This is the first report on the codon usage in M. lepromatosis.


Asunto(s)
Codón/metabolismo , Islas de CpG/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Genoma Bacteriano , Mycobacterium/genética , Codón/genética
12.
PLoS One ; 15(5): e0229700, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32379829

RESUMEN

One of the most important and exclusive characteristics of mycobacteria is their cell wall. Amongst its constituent components are two related families of glycosylated lipids, diphthioceranates and phthiocerol dimycocerosate (PDIM) and its variant phenolic glycolipids (PGL). PGL have been associated with cell wall impermeability, phagocytosis, defence against nitrosative and oxidative stress and, intriguingly, biofilm formation. In bacteria from the Mycobacterium tuberculosis complex (MTBC), the biosynthetic pathway of the phenolphthiocerol moiety of PGL depends upon the expression of several genes encoding type I polyketide synthases (PKS), namely ppsA-E and pks15/1 which constitute the PDIM + PGL locus, and that are highly conserved in PDIM/PGL-producing strains. Consensus has not been achieved regarding the genetic organization of pks15/1 locus and knowledge is lacking on its transcriptional signature. Here we explore publicly available datasets of transcriptome data (RNA-seq) from more than 100 MTBC experiments in 40 growth conditions to outline the transcriptional structure and signature of pks15/1, using a differential expression approach to infer the regulatory patterns involving these and related genes. We show that pks1 expression is highly correlated with fadD22, Rv2949c, lppX, fadD29 and, also, pks6 and pks12, with the first three putatively integrating into a polycistronic structure. We evidence dynamic transcriptional heterogeneity within the genes involved in phenolphtiocerol and phenolic glycolipid production, most exhibiting up-regulation upon acidic pH and antibiotic exposure and down-regulation under hypoxia, dormancy, and low/high iron concentration. We finally propose a model based on transcriptome data in which σD positively regulates pks1, pks15 and fadD22, while σB and σE factors exert negative regulation at an upper level.


Asunto(s)
Antígenos Bacterianos/biosíntesis , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Glucolípidos/biosíntesis , Glucolípidos/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Sintasas Poliquetidas/genética , Transcriptoma , Pared Celular/metabolismo , Simulación por Computador , Redes Reguladoras de Genes , Sitios Genéticos , Genoma Bacteriano/genética , Ligasas/genética , RNA-Seq , Virulencia/genética
13.
J Appl Microbiol ; 128(6): 1814-1819, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31981442

RESUMEN

AIMS: Diagnosis of leprosy, a chronic infection caused by Mycobacterium leprae, predominantly depends on clinical manifestations and histopathological analysis, hampering rapid and accurate diagnostics. Our aim was to increase accuracy of leprosy diagnosis by improving M. leprae's DNA detection based on polymerase chain reaction (PCR) technique using new specific primers for the RLEP repetitive sequence. METHODS AND RESULTS: The specific target region, RLEP, of M. leprae's genome was selected based on comparative genomics. After confirming the specificity of this region, using blastn analysis, primers were designed and tested for their in silico specificity. To evaluate the specificity and sensitivity of these primers in vitro, 184 blood samples from patients were used in qPCR. The new primer pair LYON1/LYON2 produced 91% positive samples, whereas the current primer pair LP1/LP2 produced 46%. Specificity and DNA detection limit test were carried out to compare the efficiency of the developed primer pair. The LYON1/LYON2 primer showed 100% specificity, whereas LP1/LP2 showed 64%. The DNA detection limit of LYON1/LYON2 was 10 copies of bacterial genomes per millilitre, whereas LP1/LP2 was 1000 copies of bacterial genomes per millilitre. CONCLUSIONS: In conclusion, the developed LYON1/LYON2 primer pair presented to be a specific and sensitive new molecular marker for the diagnosis of leprosy. SIGNIFICANCE AND IMPACT OF THE STUDY: The development of a specific primer pair for the detection of the M. leprae genome through qPCR technique contributes to a fast, sensitive and specific diagnosis, which is essential to prevent spreading and progression of this disease.


Asunto(s)
Lepra/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Mycobacterium leprae/aislamiento & purificación , ADN Bacteriano/genética , Femenino , Genoma Bacteriano/genética , Humanos , Secuencias Repetitivas Esparcidas/genética , Lepra/sangre , Lepra/microbiología , Mycobacterium leprae/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y Especificidad
14.
Int J Paleopathol ; 27: 1-8, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31430635

RESUMEN

OBJECTIVE: We assessed whether Petrus Donders (died 1887), a Dutch priest who for 27 years cared for people with leprosy in the leprosarium Batavia, Suriname, had evidence of Mycobacterium (M.) leprae infection. A positive finding of M. leprae ancient (a)DNA would contribute to the origin of leprosy in Suriname. MATERIALS: Skeletal remains of Father Petrus Donders; two additional skeletons excavated from the Batavia cemetery were used as controls. METHODS: Archival research, paleopathological evaluation and aDNA-based testing of skeletal remains. RESULTS: Neither archives nor inspection of Donders skeletal remains revealed evidence of leprosy, and aDNA-based testing for M. leprae was negative. We detected M. leprae aDNA by RLEP PCR in one control skeleton, which also displayed pathological lesions compatible with leprosy. The M. leprae aDNA was genotyped by Sanger sequencing as SNP type 4; the skeleton displayed mitochondrial haplogroup L3. CONCLUSION: We found no evidence that Donders contracted leprosy despite years of intense leprosy contact, but we successfully isolated an archaeological M. leprae aDNA sample from a control skeleton from South America. SIGNIFICANCE: We successfully genotyped recovered aDNA to a M. leprae strain that likely originated in West Africa. The detected human mitochondrial haplogroup L3 is also associated with this geographical region. This suggests that slave trade contributed to leprosy in Suriname. LIMITATIONS: A limited number of skeletons was examined. SUGGESTIONS FOR FURTHER RESEARCH: Broader review of skeletal collections is advised to expand on diversity of the M. leprae aDNA database.


Asunto(s)
Cementerios/historia , ADN Bacteriano/genética , Genoma Bacteriano/genética , Mycobacterium leprae/patogenicidad , Esqueleto/microbiología , ADN Bacteriano/historia , Genotipo , Historia del Siglo XIX , Humanos , Paleopatología/métodos , Suriname
15.
Annu Rev Microbiol ; 73: 639-666, 2019 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-31283430

RESUMEN

The last century has witnessed progress in the study of ancient infectious disease from purely medical descriptions of past ailments to dynamic interpretations of past population health that draw upon multiple perspectives. The recent adoption of high-throughput DNA sequencing has led to an expanded understanding of pathogen presence, evolution, and ecology across the globe. This genomic revolution has led to the identification of disease-causing microbes in both expected and unexpected contexts, while also providing for the genomic characterization of ancient pathogens previously believed to be unattainable by available methods. In this review we explore the development of DNA-based ancient pathogen research, the specialized methods and tools that have emerged to authenticate and explore infectious disease of the past, and the unique challenges that persist in molecular paleopathology. We offer guidelines to mitigate the impact of these challenges, which will allow for more reliable interpretations of data in this rapidly evolving field of investigation.


Asunto(s)
Enfermedades Transmisibles/historia , ADN Antiguo/análisis , Fósiles/microbiología , Paleopatología/métodos , Evolución Biológica , ADN Bacteriano , Fósiles/parasitología , Genoma Bacteriano , Genómica/métodos , Helicobacter pylori/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Historia Antigua , Humanos , Mycobacterium leprae/genética , Mycobacterium tuberculosis/genética , Paleontología/métodos , Filogenia , Yersinia pestis/genética
16.
Acta Trop ; 197: 105041, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31152726

RESUMEN

Leprosy is an ancient disease caused by the acid-fast bacillus Mycobacterium leprae, also known as Hansen's bacillus. M. leprae is an obligate intracellular microorganism with a marked Schwann cell tropism and is the only human pathogen capable of invading the superficial peripheral nerves. The transmission mechanism of M. leprae is not fully understood; however, the nasal mucosa is accepted as main route of M. leprae entry to the human host. The complete sequencing and the comparative genome analysis show that M. leprae underwent a genome reductive evolution process, as result of lifestyle change and adaptation to different environments; some of lost genes are homologous to those of host cells. Thus, M. leprae reduced its genome size to 3.3 Mbp, contributing to obtain the lowest GC content (approximately 58%) among mycobacteria. The M. leprae genome contains 1614 open reading frames coding for functional proteins, and 1310 pseudogenes corresponding to 41% of the genome, approximately. Comparative analyses to different microorganisms showed that M. leprae possesses the highest content of pseudogenes among pathogenic and non-pathogenic bacteria and archaea. The pathogen adaptation into host cells, as the Schwann cells, brought about the reduction of the genome and induced multiple gene inactivation. The present review highlights the characteristics of genome's reductive evolution that M. leprae experiences in the genetic aspects compared with other pathogens. The possible mechanisms of pseudogenes formation are discussed.


Asunto(s)
Aclimatación/genética , Evolución Molecular , Lepra/microbiología , Mycobacterium leprae/genética , Mycobacterium leprae/fisiología , ADN Bacteriano , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Humanos
17.
J Clin Microbiol ; 57(8)2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31092597

RESUMEN

Many pathogens that caused devastating disease throughout human history, such as Yersinia pestis, Mycobacterium tuberculosis, and Mycobacterium leprae, remain problematic today. Historical bacterial genomes represent a unique source of genetic information and advancements in sequencing technologies have allowed unprecedented insights from this previously understudied resource. This minireview brings together example studies which have utilized ancient DNA, individual historical isolates (both extant and dead) and collections of historical isolates. The studies span human history and highlight the contribution that sequencing and analysis of historical bacterial genomes have made to a wide variety of fields. From providing retrospective diagnosis, to uncovering epidemiological pathways and characterizing genetic diversity, there is clear evidence for the utility of historical isolate studies in understanding disease today. Studies utilizing historical isolate collections, such as those from the National Collection of Type Cultures, the American Type Culture Collection, and the Institut Pasteur, offer enhanced insight since they typically span a wide time period encompassing important historical events and are useful for the investigating the phylodynamics of pathogens. Furthermore, historical sequencing studies are particularly useful for looking into the evolution of antimicrobial resistance, a major public health concern. In summary, although there are limitations to working with historical bacterial isolates, especially when utilizing ancient DNA, continued improvement in molecular and sequencing technologies and the resourcefulness of investigators mean this area of study will continue to expand and contribute to the understanding of pathogens.


Asunto(s)
Bacterias/genética , ADN Antiguo/análisis , Genoma Bacteriano , Análisis de Secuencia de ADN , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/patogenicidad , Farmacorresistencia Bacteriana Múltiple/genética , Evolución Molecular , Variación Genética , Humanos , Mycobacterium leprae/genética , Mycobacterium leprae/patogenicidad , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Filogenia , Yersinia pestis/genética , Yersinia pestis/patogenicidad
18.
J Bacteriol ; 201(14)2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31036728

RESUMEN

We characterized an operon in Mycobacterium tuberculosis, Rv3679-Rv3680, in which each open reading frame is annotated to encode "anion transporter ATPase" homologues. Using structure prediction modeling, we found that Rv3679 and Rv3680 more closely resemble the guided entry of tail-anchored proteins 3 (Get3) chaperone in eukaryotes. Get3 delivers proteins into the membranes of the endoplasmic reticulum and is essential for the normal growth and physiology of some eukaryotes. We sought to characterize the structures of Rv3679 and Rv3680 and test if they have a role in M. tuberculosis pathogenesis. We solved crystal structures of the nucleotide-bound Rv3679-Rv3680 complex at 2.5 to 3.2 Å and show that while it has some similarities to Get3 and ArsA, there are notable differences, including that these proteins are unlikely to be involved in anion transport. Deletion of both genes did not reveal any conspicuous growth defects in vitro or in mice. Collectively, we identified a new class of proteins in bacteria with similarity to Get3 complexes, the functions of which remain to be determined.IMPORTANCE Numerous bacterial species encode proteins predicted to have similarity with Get3- and ArsA-type anion transporters. Our studies provide evidence that these proteins, which we named BagA and BagB, are unlikely to be involved in anion transport. In addition, BagA and BagB are conserved in all mycobacterial species, including the causative agent of leprosy, which has a highly decayed genome. This conservation suggests that BagAB constitutes a part of the core mycobacterial genome and is needed for some yet-to-be-determined part of the life cycle of these organisms.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Animales , Proteínas de Transporte de Anión/genética , Femenino , Genoma Bacteriano , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Operón , Unión Proteica , Conformación Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
19.
Emerg Microbes Infect ; 8(1): 109-118, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30866765

RESUMEN

Of the more than 190 distinct species of Mycobacterium genus, many are economically and clinically important pathogens of humans or animals. Among those mycobacteria that infect humans, three species namely Mycobacterium tuberculosis (causative agent of tuberculosis), Mycobacterium leprae (causative agent of leprosy) and Mycobacterium abscessus (causative agent of chronic pulmonary infections) pose concern to global public health. Although antibiotics have been successfully developed to combat each of these, the emergence of drug-resistant strains is an increasing challenge for treatment and drug discovery. Here we describe the impact of the rapid expansion of genome sequencing and genome/pathway annotations that have greatly improved the progress of structure-guided drug discovery. We focus on the applications of comparative genomics, metabolomics, evolutionary bioinformatics and structural proteomics to identify potential drug targets. The opportunities and challenges for the design of drugs for M. tuberculosis, M. leprae and M. abscessus to combat resistance are discussed.


Asunto(s)
Proteínas Bacterianas/química , Biología Computacional/métodos , Mycobacterium/genética , Análisis de Secuencia de ADN/métodos , Animales , Proteínas Bacterianas/metabolismo , Descubrimiento de Drogas , Farmacorresistencia Bacteriana , Genoma Bacteriano , Humanos , Anotación de Secuencia Molecular , Mycobacterium/metabolismo , Mycobacterium abscessus/genética , Mycobacterium abscessus/metabolismo , Mycobacterium leprae/genética , Mycobacterium leprae/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Conformación Proteica , Proteómica
20.
Biochem Biophys Res Commun ; 509(3): 779-783, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30616886

RESUMEN

Repair of DNA alkylation damage is essential for maintaining genome integrity and Fe(II)/2-oxoglutarate(2OG)-dependent dioxygenase family of enzymes play crucial role in repairing some of the alkylation damages. Alkylation repair protein-B (AlkB) of Escherichia coli belongs to Fe(II)/2OG-dependent dioxygenase family and carries out DNA dealkylation repair. We report here identification of a hypothetical Mycobacterium leprae protein (accession no. ML0190) from the genomic database and show that this 615-bp open reading frame encodes a protein with sequence and structural similarity to Fe(II)/2OG-dependent dioxygenase AlkB. We identified mRNA transcript of this gene in the M. leprae infected clinical skin biopsy samples isolated from the leprosy patients. Heterologous expression of ML0190 in methyl methane sulfonate (MMS) sensitive and DNA repair deficient strain of Saccharomyces cerevisiae and Escherichia coli resulted in resistance to alkylating agent MM. The results of the present study imply that Mycobacterium leprae ML0190 is involved in protecting the bacterial genome from DNA alkylation damage.


Asunto(s)
Proteínas Bacterianas/genética , Escherichia coli/efectos de los fármacos , Metilmetanosulfonato/toxicidad , Mutágenos/toxicidad , Mycobacterium leprae/genética , Saccharomyces cerevisiae/efectos de los fármacos , Alquilación/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Escherichia coli/genética , Genes Bacterianos , Genoma Bacteriano/efectos de los fármacos , Humanos , Lepra/microbiología , Modelos Moleculares , Mycobacterium leprae/efectos de los fármacos , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA